Page 133 - The Vasculitides, Volume 1: General Considerations and Systemic Vasculitis
P. 133

Genetic Aspects of Vasculitis   109

[25] Weyand, C. M., Hicok, K. C., Hunder, G. G., et al. The HLA-DRB1 locus as a genetic
       component in giant cell arteritis. Mapping of a disease-linked sequence motif to the
       antigen binding site of the HLA-DR molecule. J. Clin. Invest. 1992; 90:2355-2361.

[26] Weyand, C. M., Hunder, N. N., Hicok, K. C., et al. HLA-DRB1 alleles in polymyalgia
       rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum. 1994; 37:514-
       520.

[27] Gonzalez-Gay, M. A., Garcia-Porrua, C., Llorca, J., et al. Visual manifestations of giant
       cell arteritis. Trends and clinical spectrum in 161 patients. Medicine (Baltimore) 2000;
       79:283-292.

[28] Gonzalez-Gay, M. A., Garcia-Porrua, C., Hajeer, A. H., et al. HLA-DRB1*04 may be a
       marker of severity in giant cell arteritis. Ann. Rheum. Dis. 2000; 59:574-575.

[29] Hansen, J. A., Healey, L. A., Wilske, K. R. Association between giant cell (temporal)
       arteritis and HLA-Cw3. Hum. Immunol. 1985; 13:193-198.

[30] Kemp, A., Marner, K., Nissen, S. H., et al. HLA antigens in cases of giant cell arteritis.
       Acta Ophthalmol. (Copenh.) 1980; 58:1000-1004.

[31] Gonzalez-Gay, M. A., Rueda, B., Vilchez, J. R., et al. Contribution of MHC class I
       region to genetic susceptibility for giant cell arteritis. Rheumatology (Oxford) 2007; 46:
       431-434.

[32] Rhee, I., Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and
       autoimmunity. Nat. Immunol. 2012; 13:439-447.

[33] Serrano, A., Márquez, A., Mackie, S. L., et al. Identification of the PTPN22 functional
       variant R620W as susceptibility genetic factor for giant cell arteritis. Ann. Rheum. Dis.
       2013; 72:1882-1886.

[34] Zhong, M. C., Veillette, A. Immunology: Csk keeps LYP on a leash. Nat. Chem. Biol.
       2012; 8:412-413.

[35] Serrano, A., Carmona, F. D., Castaneda, S., et al. Evidence of association of the NLRP1
       gene with giant cell arteritis. Ann. Rheum. Dis. 2013; 72:628-630.

[36] Rueda, B., Roibas, B., Martin, J., et al. Influence of interleukin 10 promoter
       polymorphisms in susceptibility to giant cell arteritis in Northwestern Spain. J.
       Rheumatol. 2007; 34:1535-1539.

[37] Boiardi, L., Casali, B., Farnetti, E., et al. Interleukin-10 promoter polymorphisms in
       giant cell arteritis. Arthritis Rheum. 2006; 54:4011-4017.

[38] Amoli, M. M., Gonzalez-Gay, M. A., Zeggini, E., et al. Epistatic interactions between
       HLA-DRB1 and interleukin 4, but not interferon-gamma, increase susceptibility to
       giant cell arteritis. J. of Rheum. 2004; 31:2413-2417.

[39] Amoli, M. M., Salway, F., Zeggini, E., et al. MCP-1 gene haplotype association in
       biopsy proven giant cell arteritis. J. Rheumatol. 2005; 32:507-510.

[40] Enjuanes, A., Benavente, Y., Hernandez-Rodriguez, J., et al. Association of NOS2 and
       potential effect of VEGF, IL6, CCL2 and IL1RN polymorphisms and haplotypes on
       susceptibility to GCA--a simultaneous study of 130 potentially functional SNPs in 14
       candidate genes. Rheumatology (Oxford) 2012; 51:841-851.

[41] Gonzalez-Gay, M. A., Hajeer, A. H., Dababneh, A., et al. Interferon-gamma gene
       microsatellite polymorphisms in patients with biopsy-proven giant cell arteritis and
       isolated polymyalgia rheumatica. Clin. Exp. Rheumatol. 2004; 22(6 Suppl. 36):S18-20.

Complimentary Contributor Copy
   128   129   130   131   132   133   134   135   136   137   138