Page 104 - The Vasculitides, Volume 1: General Considerations and Systemic Vasculitis
P. 104
80 David S. Younger
[33] Lowenstein, M. B., Bridgeford, P. H., Vasey, F. B., et al. Increased frequency of HLA-
DR3 and DR4 in polymyalgia rheumatica-giant cell arteritis. Arthritis Rheum. 1983; 26:
925-927.
[34] Martinez-Taboda, V. M., Bartolome, M. J., Lopez-Hoyos, M., et al. HLA-DRB1 allele
distribution in polymyalgia rheumatica and giant cell arteritis: influence on clinical
subgroups and prognosis. Semin. Arthritis Rheum. 2004; 34:454-464.
[35] Weyand, C. M., Hicok, K. C., Hunder, G. G., et al. The HLA-DRB1 locus as a genetic
component in giant cell arteritis. Mapping of a disease-linked sequence motif to the
antigen binding site of the HLA-DR molecule. J. Clin. Invest. 1992; 90:2355-2361.
[36] Weyand, C. M., Hunder, N. N., Hicok, K. C., et al. HLA-DRB1 alleles in polymyalgia
rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum. 1994; 37:514-
520.
[37] Gonzalez-Gay, M. A., Garcia-Porrua, C., Llorca, J., et al. Visual manifestations of giant
cell arteritis. Trends and clinical spectrum in 161 patients. Medicine (Baltimore) 2000;
79:283-292.
[38] Hansen, J. A., Healey, L. A., Wilske, K. R. Association between giant cell (temporal)
arteritis and HLA-Cw3. Hum. Immunol. 1985; 13:193-198.
[39] Gonzalez-Gay, M. A., Rueda, B., Vilchez, J. R., et al. Contribution of MHC class I
region to genetic susceptibility for giant cell arteritis. Rheumatology (Oxford) 2007; 46:
431-434.
[40] Arend, W. P., Michel, B. A., Bloch, D. A., et al. The American College of
Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum.
1990; 33:1129-1134.
[41] Ringold, S., Wallace, C. A. Evolution of paediatric-specific vasculitis classification
criteria. Ann. Rheum. Dis. 2010; 69:785-786.
[42] Ruperto, N., Ozen, S., Pistorio, A., et al. EULAR/PRINTO/PRES criteria for Henoch-
Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis
and childhood Takayasu arteritis: Ankara 2008. Part 1: Overall methodology and
clinical characterization. Ann. Rheum. Dis. 2010; 69:790-797.
[43] Seko, Y., Minota, S., Kawasaki, A., et al. Perforin-secreting killer cell infiltration and
expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu?s
arteritis. J. Clin. Invest. 1994; 93:750-758.
[44] Wagner, A. D., Bjornsson, J., Bartley, G. B., et al. Interferon-gamma-producing T cells
in giant cell vasculitis represents a minority of tissue-infiltrating cells and are located
distant from the site of pathology. Am. J. Pathol. 1996; 148:1923-1933.
[45] Sneller, M. C. Granuloma formation, implications for the pathogenesis of vasculitis,
Cleve. Clin. J. Med. 2002; 69(Suppl. 2):SII40-SII43.
[46] Weyand, C. M., Goronzy, H. Medium- and large-vessel vasculitis. N. Engl. J. Med.
2002; 349:160-169.
[47] Deng, J., Younge, B., Olshen, R. A., et al. TH17 and Th1 T-cell responses in giant cell
arteritis. Circulation 2010; 121:906-915.
[48] Terrier, B., Geri, G., Chaara, W., et al. Interleukin-21 modulates Th1 and Th1 responses
in giant cell arteritis. Arthritis Rheum. 2012; 64:2001-2011.
[49] Noguchi, S., Numano, F., Gravanis, M. B., et al. Increased levels of soluble forms of
adhesion molecules in Takayasu arteritis. Int. J. Cardiol. 1998; 66(Suppl. 1):S23-S35.
Complimentary Contributor Copy