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KEY POINTS

e Measures of disease frequency include incidence, prevalence, odds and mortality rates.

e Summary measures of disease and disability have relevance to global health and have
been used successfully by the Global Burden of Disease Study.

e Measures of effect and association include risk difference, risk ratio, relative excess, null
state and counterfactual, and prevalence ratios.

e Epidemiologic estimation examines validity and error through estimation of P values, hy-
pothesis testing, confidence intervals, and confidence limits.

e The major types of epidemiology study designs are randomized controlled trials, and
nonexperimental study types including cohort, case control, cross-sectional and ecolog-
ical study types.

INTRODUCTION

Neuroepidemiology is a branch of epidemiology involving the study of neurologic
disease distribution and determinants of frequency in human populations. It includes
the science of epidemiologic measures, estimation, hypothesis testing, and design
of experimental and nonexperimental studies. This article reviews basic aspects of
epidemiology that will be useful for articles relating to the neuroepidemiology of
diverse neurologic disorders. Those interested in reading more deeply into the area
of research methods of epidemiology are directed to general texts and monographs
on the subject.’®

MEASURES OF DISEASE FREQUENCY

Greenland and Rothman® review measures of occurrence elaborated further below.
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Incidence

Incidence is defined as the occurrence of new cases of disease that develop in a
candidate population over a specified time period. Cumulative incidence is the
proportion of candidate population that becomes diseased over a specific time period
mathematically expressed as follows:

number of new cases of a disease

Inci ) =
nidence (1) number of candidate population

over a specified time period.

Note that the numerator is a subset of the denominator and thus the possible value
of cumulative incidence ranges from 0 to 1, or if expressed as a percentage, from 0%
to 100%. Time is not an integral part of this proportion, but rather is expressed by the
words that accompany the numbers. Thought of as an average risk of getting a dis-
ease over a certain period of time, cumulative incidence is a commonly cited measure
such as the “lifetime risk” currently estimated at 1 in 8, among United States men for
the occurrence of stroke. Cumulative incidence is mainly used in fixed populations
when there are no or only small losses to follow-up.

Epidemiologists have recognized that outcome events are not inevitable and may
not occur during the period of observation; hence, the set of incidence times for a spe-
cific event in a population may not be precisely timed or observed. One way to deal
with this complication has been to develop a measure to account for the length of
time each individual contributes to the population at risk for the event during the period
of time during which the event was a possibility and would have been counted in the
population had it occurred. The sum of the person-times over all population members,
termed the total person-time at risk or the population-time at risk, is the total of time
during which disease onsets could occur in the population of interest. The incidence
rate (IR), person-time rate, or incidence density of the population is defined as the
number of new cases of disease (incident number) divided by the person-time over
the period:

number of disease onsets
> persons tiMe spent in population

Incidence rate (IR)

When the risk period is of a fixed length equal to At, the proportion of the period
that a person spends in the population at risk is their amount of person-time divided
by At such that the average size of the population over the period of time is repre-
sented by:

— time spent in population
N —
perszons At

The total person-time at risk over the period is equal to the product of the average
size of the population over the period N, and the fixed length of the risk period At. If the
incident number is denoted by A, it follows that the IR equals A/(N x At). This formu-
lation shows that the IR has units of inverse time that can be rewritten as year—,
month™, or day~'. The outcome events that can be counted in the numerator of an
IR are those that occur to persons who are contributing to the denominator of the
IR at the time that the disease onset occurs. Likewise, only time contributed by per-
sons eligible to be counted in the numerator if they suffer such an event should be
included in the denominator. An alternative way of expressing a population IR is as
a time-weighted average of individual rates. An individual rate is either 0/(time spent
in population) = 0 if the individual does not experience the event, or 1/(time spent in
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population) if the individual does experience the event. One then has the number of
disease onsets A shown as follows:

A = Z (time spent in population) (individual rate)

persons
and so

D persons (time spent in population) (individual rate)

IR
> _persons (time spent in population)

Although a central one in epidemiology, the IR has certain limitations. First, it does
not capture all aspects of disease occurrence as illustrated by the analogy of noting
that a rate of 1 case/(100 years) = 0.01 year~" could be obtained by following 100 peo-
ple for an average of 1 year and observing 1 case, but could also be obtained by
following 2 people for 50 years and observing 1 case. To distinguish these situations,
more detailed measures are needed, such as incidence time. Second, the numeric
value lacks interpretability because the IR ultimately depends on the selection of

time in which it is presented to give it significance. This is illustrated by the fact that
cases

person — year’

833 2988 ygp COS ,gp7 O  iewise, the IRs of
person — month person — week person — day

0.15, 0.04, and 0.009 cases per person-year could be multiplied by 1000 to be dis-
played as 150, 40, and 9 cases per 1000 person-years, regardless of whether the ob-
servations are made over 1 year of time, 1 week of time, or over a decade, just as one
could measure the speed of a car in miles per hour even regardless of whether it is
measured for only a few seconds.

Although the IR often includes the first occurrence of disease onset as an eligible
event for the numerator of the equation, in many diseases there may be repeated
events particularly in neurologic disorders such as multiple sclerosis and chronic in-
flammatory demyelinating polyneuropathy, both of which are characterized by re-
lapses and remissions in which there may even be a disease-free period between
recurrences. When the events tallied in the numerator of an IR are the first occurrence
of disease, then the time contributed by each person in whom the disease develops
should terminate with the onset of disease, meaning that further information would
be obtained from further observation. Thus, each person who experiences the
outcome should contribute time to the denominator until the occurrence of the event,
but not afterward. In studies of both first and subsequent occurrences of a disease in
which it is not important to distinguish between the first and subsequent occurrences,
then the time accumulated in the denominator of the rate would not cease with the
occurrence of the outcome event. A useful approach is to define the “population at
risk” differently for each occurrence of the event, such as studies of individuals
restricted to the population of those who have survived the first event of a given dis-
ease such as chronic inflammatory demyelinating polyneuropathy. The distinguished
populations may be closed or open, with the former adding no new members over
time and lost only to attrition. The term cohort is sometimes used to describe a study
population, although typically it is reserved for a narrower concept as that of a group of
persons for whom the membership is defined by a single event. If the number of peo-
ple entering a population is balanced by the number exiting, the population is said to
be stationary or in a steady state. In a stationary population with no migration, the
crude IR of an inevitable outcome such as death will equal the reciprocal of the

an IR of 100 cases per 1 person-year might be expressed as: 100
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average time spent in the population until the outcome occurs such that a death rate of
0.04 year~" would translate into an average time from entry until death of 25 years.
Within a given time interval, the incident number of cases can also be expressed in
relation to the size of the population at risk such that in the absence of immigration or
emigration, such a rate becomes the proportion of people who become cases among
those in the population at the start of the interval. The latter is defined as the proportion
of a closed population at risk that becomes diseased within a given period of time.
Thus, the number of disease onsets A is then the sum of the individual proportions:

A = ) individual proportions

persons
And thus,
Y personsindividual proportions

Incidence proportion (IP) = initial size of the population = AN

So, defined as individual risks, this formulation illustrates that the IP is an average
risk, ignoring the amount of person-time contributed by individuals but with a more
intuitive interpretation than the IR. With a range from 0 to 1, it is dimensionless how-
ever an IP of disease of 3% means something very different when it refers to a
40-year period than a 40-day period.

With regard to their numerical value, a cumulative incidence and rate can only be
compared if they are based on the same time unit, for example, cumulative incidence
over a 1-year period and rate per person-year. Under this circumstance, the general
rule is that in absolute value, the rate will always be larger than the cumulative inci-
dence notably when x cases are lost to follow-up with or without censoring (C).

In the absence of censoring:

X

1
7§X

X
| = = IR =
Nand N

While in the presence of censoring with | and IR can be, respectively, represented as:

As long as x >0, the denominator of the rate will always be smaller than that of the
cumulative incidence, explaining the greater absolute value of the rate. This occurs
because the cumulative incidence is based on the number of individuals at risk at
the beginning of the interval whereas the rate is based on person-time of observations
over the follow-up period, subtracting person-time lost by cases.

The hazard rate (H) is an alternative definition for an instantaneous IR also called
instantaneous conditional incidence. It is defined as each individual’'s instantaneous
probability of the event at precisely time t or at a small interval [t, t + Atf] given or condi-
tioned on the fact that the individual was at risk at time t. Thus the hazard rate is
defined for each particular point in time during the follow-up in mathematical terms
for a small time interval, assuming At is close to zero as follows:

P (event in interval between t and [t+ 4t] | alive at f)
At

The H is analogous to the conditional probability of an event that is calculated at
each event time using the Kaplan-Meier approach however because its denominator
is “time at risk,” it is instead a rate measured in unit of time~". Moreover, in contrast
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with the Kaplan-Meier conditional probability, the H cannot be directly calculated as it
is defined for an infinitely small time interval; however, the H function over time can be
estimated using available parametric survival analysis techniques.

Prevalence

Unlike incidence measures, which focus on new events or changes, prevalence fo-
cuses on existing states. Although incidence measures the frequency with which
new disease develops, prevalence measures the frequency of existing disease. It is
simply defined as the proportion of the population with the disease. Point prevalence
and period prevalence refer to 2 types of prevalence measures. The first refers to the
proportion of the population that is diseased at a single point in time, thought of as a
snapshot of the population, and the latter as the proportion of the population that is
diseased during a specified duration of time. Mathematically, point prevalence and
period prevalence are expressed respectively as follows:

Number of existing cases of disease

At a point or in a period of time.
Number of total population P P

Prevalence depends on the rate at which new cases of disease develop and the
duration (D) or length of time that individuals have the disease. The duration of disease
starts at the time of diagnosis and ends when the person either is cured or dies. Math-
ematically, the relationship between prevalence and incidence is as follows:

P/1 —P)=IR x D

where P is prevalence (the proportion of the total population with the disease), 1-P is
the proportion of the total population without the disease, IR is the incidence rate, and
D is the average duration (or length of time) that an individual has the disease. This
equation assumes that the population is in steady state of inflow equals outflow,
and that the IR and duration do not change over time.

If the population at risk and the prevalence pool are stationary and everyone is either
at risk or has the disease, then the number of people entering the prevalence pool in
any time period will be balanced by the number exiting from it. Supposing there is no
immigration into or emigration from the prevalence so that no one enters or leaves the
pool except by disease onset, death, or recovery, the size of the population at risk will
be the size of the population (N), minus the size of the prevalence pool (P); and
during any time interval of length At, the number who enter the prevalence pool would
be IR (N — P) At and the outflow of the prevalence pool would be IR°’P At where IR’ is
the IR of exiting the prevalence pool. In the absence of migration, the reciprocal of IR’

will equal the mean duration of the disease, D ; and so it follows that:

5 = IR x D where P/

(N — P) is the ratio of diseased to nondiseased people in the population or equivalently
the ratio of the prevalence proportion to the nondiseased proportion, or the prevalence
odds. If the prevalence is small (<0.1), then P approximates IR x D.

Although incidence is most useful for evaluating the effectiveness of a program that
seeks to prevent diseases from occurring in the first place, researchers who study the
cause of disease and prefer to examine new cases (incidence) over existing ones
(prevalence) because they are interested more in exposures that lead to developing
the disease in question.? Prevalence obscures the relationship because it combines
incidence and survival. On the other hand, prevalence is most useful for estimating

Inflow = IR (N — P) At = outflow = (I/D ) PAt which yields N P
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the needs of medical facilities and allocating resources for treating individuals who
already have a disease.

Odds

QOdds are the ratio of the probability of an event of interest to that of the nonevent and
can be defined both for incidence and for prevalence. When dealing with incidence
probabilities, the odds are simply:

1—1
And while knowing the odds allow the calculation of probability:

odds
1+odds

The point prevalence odds are similarly expressed as:

Point prevalence
1 — Point prevalence

Both odds and proportions can be used to express the frequency of a disease and
can approximate a proportion when the disease is very small (eg, <0.1). If the propor-
tion of a disease is known in a population to be 0.20, the odds of the disease can be
expressed as:

proportion of the proportion of the
population with disease _ population with disease

1 — proportion of a proportion of the
population with disease population without disease

Although as an isolated measure epidemiologists rarely if ever use odds to express
disease occurrence, the odds ratio (OR) is a useful measure of association because it
estimates the relative risk (RR) in case-based studies.

Mortality Ratios

Other measures of risk are generally expressed using mortality ratios (MR) to estimate
the frequency of this occurrence of death in a defined population over a specified in-
terval, whether expressed as crude mortality for all causes in a population or a single
cause. MRs can be studied in reference to infant and maternal deaths, or adjusted for
sex, age, race, and ethnicity, or by particular conditions or the proportion thereof to
provide insight into public health responses to the leading causes of mortality and
health disparities. Crude mortality generally refers to the total number of deaths
from all causes based on raw data per 100,000 population per year. Cause-specific
mortality is the number of deaths from a specific cause per 100,000 population per
year. Age-specific mortality or the death rate is the total number of deaths from all
causes among individuals in a specific age category per 100,000 population per
year in the age category. Often divided into neonatal deaths occurring during the first
27 days after birth and postneonatal deaths occurring from 28 days to 12 months, the
infant mortality rate is the number of number of deaths of infants less than 1 year of age
per 1000 live births per year. The morbidity rate represents the number of existing or
new cases of a particular disease or condition per 100 population. The time period and
the size of the population concerned may vary. The attack rate is the number of new
cases of disease that develops usually during a defined and short time period, per the
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number in a healthy population at risk at the start of the period. This cumulative inci-
dence measure is usually reserved for infectious outbreaks. The case fatality rate is the
number of deaths per number of cases of disease. This is a type of cumulative inci-
dence, so it is generally useful to specify the length of time to which it applies. Last,
the survival rate is the number of living cases per number of cases of diseased. This
rate is the complement of the case fatality rate, and is also a cumulative incidence
measure.

Disability and Summary Measures

The term premature mortality was originally proposed to address the inadequacy of
MR in measuring the burden of disease owing to tuberculosis and has since proved
to be a particularly useful way to describe other diseases.'® In choosing an arbitrary
limit to life, the calculation of the difference between the age at death and an arbitrary
designated limit measured in years of life lost (YLL) owing to premature mortality is a
useful assessment of the impact of premature mortality in a given population. The YLL
rate, which represents years of potential life lost per 1000 population below an arbi-
trary endpoint age such as 65 years, is more desirable in comparing premature mor-
tality in different populations because the YLL does not take into account differences
in population sizes.'"

Another measure of the burden of disease in a population termed disability-
adjusted life years captures in a single figure, health losses associated with mortal-
ity and different nonfatal outcomes of diseases and injuries.'> Summary measures
used by the Global Burden of Disease Studies'®'* such as Healthy Adjusted Life
Expectancy (HALE) are derived from YLLs and years lived with disability (YLDs)
to compare assessments of broad epidemiologic patterns across countries and
time, and to quantify the component of variation in epidemiology related to
sociodemographic development. Calculated by adding YLLs and YLDs, disability-
adjusted life years add disability to the measure of mortality, and based on the
universal measure of time in life years, provides a common currency for health
care resource allocation and the effectiveness of interventions assessed one rela-
tive to another across a wide range of health problems. YLDs, equal to the sum of
prevalence multiplied by the general public’s assessment of the severity of health
loss, has been used as a primary metric to explore disease patterns over time,
age, sex, and geography, and in recognizing that the aging of the world’s popula-
tion has led to substantial increases in the number of individuals with sequelae of
diseases.'® Because YLDs have been declining much more slowly than MRs, the
nonfatal dimensions of disease require more and more attention from health care
systems. Neurologic disorders accounted for 7.7% of all cause YLDs in 2013, a
5% increase in age-standardized YLDs from 1990 to 2013 (2.4%-7.9%) with the
leading causes being Alzheimer disease, Parkinson disease, epilepsy, multiple
sclerosis, migraine, tension and medication overuse headaches, and other neuro-
logic disorders.*

MEASURES OF EFFECT AND ASSOCIATION

Measures of effect compare what would happen to 1 population under 2 possible
but distinct life courses or conditions, of which at most only 1 can occur. In
contrast, a measure of association compares what happens in 2 distinct popula-
tions, although the 2 distinct populations may correspond to one population in
different time periods. Subject to physical and social limitations, one can observe
both populations and so can directly observe an association. Greenland and
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colleagues'® review measures of effect and measures of association further
detailed below.

Risk Difference

Consider a cohort followed over a specific time or between a given age interval un-
der 2 different conditions, some of whom who are exposed to a potentially harmful
factor, and others who are not and one asks the question of the alternative potential
outcomes in each of the 2 cohort groups. The IR of each potential outcome could
be expressed as a difference in IR or causal rate difference, alternatively as a dif-
ference in incidence proportions to derive an absolute effect per se of a treatment
intervention to derive an absolute effect on the incidence proportion. Supposing
that we have a cohort of size N defined at the start of a fixed time interval and
that anyone alive without the disease is at risk of the disease, everyone is exposed
throughout the time interval leading to A4 cases over a time T4. Ap cases will also
occur over a total time risk noted as T,. Thus the causal rate difference will be writ-
ten as:

Ay A
Ty To
whereas the casual risk difference will be expressed as:
Ay A
N N

And the causal difference in average disease-free time would be noted as:
Ty To _ T1—To
N N N
When the outcome is death, the negative of the average time difference (To/N —
T1/N) is often called the YLL.

Risk Ratio

Effect measures are most often calculated by taking ratios notably the rate and risk
ratios terms RRs. The casual rate ratio can be expressed as:

Ay
T, |
L—‘ = |—1 where I; = A;/T; is the IR|1 = exposed and 0 = unexposed, and the
Ao 0
To
At
caused risk ratio can be expressed as: % = 2—; = E—;
N

Relative Excess

A RR of greater than 1, reflecting an average effect that is causal, can be expressed as
an excess RR. The excess casual rate ratio is written as:

| lh —1 . .
R-1 = li— 1 =1 i % where IR = 14/1y is the causal rate ratio.
0 0

The excess causal risk ratio can be expressed as:
RR—-1 = % -1 = @ where RR = R4/Ry is the casual risk ratio.
0 0
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The excess rate can be expressed relative to /; or Ry, respectively, as:

1 1
1—mor1—ﬁ

The measures that arise from interchanging /; with /o and R; with Ry in attributable
fractions, also termed preventable fractions, can be interpreted easily. The expression
fraction of the risk under nonexposure that could be prevented by exposure can be
written as:

(Ro — R1)/R0 =1- R1/R0 =1-RR

In vaccine studies, this measure is also known as the vaccine efficacy.

Null State and Counterfactual in Relation to Effect Measurement

When the occurrence measures being compared do not vary with exposure, then the
measures of effect will equal 0 if expressed as a difference, or 1 if expressed as a ratio.
A null effect or null state does not depend on the way an occurrence measure is
compared. Counterfactual refers, as its name implies, to the effect measure contrary
to fact such that if a cohort is exposed or treated, then the untreated state will be the
counterfactual. The important feature of counterfactually defined effect measures is
that they involve 2 distinct conditions: an index status, which usually involves some
exposure or treatment, and a reference condition, such as no treatment against which
the exposure or treatment will be evaluated. Although unapproachable in practical
terms, the counterfactual can be thought of as the outcome if the exposed or treated
group had not been exposed.

Prevalence Ratios

It was shown previously that the crude prevalence odds (PO) equals the crude IR, /,
multiplied by the average disease duration, D when both the population at risk and
the prevalence pool are stationary and there is no migration in or out of the it. Restating
this relation between a single population under exposure and another unexposed, or
separate exposed and unexposed populations:

PO1 = |151 and POO = |()607

where subscripts 1 and 0 refer to exposed and unexposed respectively.
If the average disease duration is the same regardless of exposure (Dy=Dy), the
crude prevalence OR (POR), will equal the crude IR:

POR = —-' = ' = IR

EPIDEMIOLOGY ESTIMATION

Rothman and colleagues'” '@ review validity, precision, and statistics in epidemiologic
studies discussed further.

Validity and Error

The epidemiologic estimate is the end product of the study design, the conducted
study, and the data analysis. The goal of an epidemiologic study is to obtain a valid
and precise estimate of the frequency of a disease or of the effect of an exposure
on the occurrence of a disease in the source population under investigation. This
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entails consideration of all the possible threats to internal and external validity. Taken
to an extreme, however, epidemiologic studies designed to sample subjects from a
target population of particular interest such that the study population is a probability
sample from that population through oversampling subgroups in an effort to enhance
internal validity, may fail to identify causal relationships, thereby limiting the external
validity or generalizability of study. Most violations of internal validity can be classified
into 3 general categories: confounding, selection bias, and information bias. Accuracy
in estimation necessitates that statistical measures are estimated with little error, fail-
ures of which can be either random or systematic. Although random errors in the sam-
pling and measurement of subjects can lead to systematic errors in the final estimates,
important principles of study design emerge from separate considerations of sources
of random and systematic errors. Random error or variation can detract from accuracy
and has many components, but the major contributor is the process of selecting study
subjects. Referred to as sampling error or variation, it factors more heavily in case con-
trol studies that involve a physical sampling process than it does in cohort studies. At
least conceptually, the subjects in the study population selected to represent the pop-
ulation of broader interest may not satisfy the definition of a random sample for which
strict statistical tools will be used to measure random variation. Other sources of
random error include unexplained variation in occurrence measures such as observed
IRs or prevalence proportions, mismeasurement of key study variables, and variance
of the measurement or estimation process. Common approaches to reduce random
error and to increase precision in epidemiologic estimation include increasing the
study size, modification of the study design to increase precision, stratification of
data to examine effects in subcategories, and significance and hypothesis testing us-
ing confidence intervals (Cl) and interval estimation.

Systematic errors in epidemiologic estimation commonly referred to as biases,
threaten the internal validity of a study. They are classified primarily into 3 general cat-
egories: confounding, selection bias, and information bias. Confounding occurs when
the apparent effect of the exposure of interest is distorted because the effect of extra-
neous factors and is mistaken for, or mixed with, the actual exposure effect. The
distortion introduced by a confounder may lead to overestimation or underestimation
of an effect, toward or away from the null, depending on the direction of the associa-
tion that the confounder has with exposure and outcome; or even change the apparent
direction of an effect. By definition, confounders are extraneous risk factors for the
outcome, associated with but not affected by the exposure or disease in the source
population under study, and not an intermediate in the causal path between the expo-
sure and outcome.

By contrast, selection biases are distortions resulting from procedures used to
select subjects and from factors that influence study participation. The common
element is that the relationship between exposure and outcome is different for those
who participate, and all those who should be theoretically eligible for study, including
those who do not participate. Bias in estimating an effect can be caused by measure-
ment errors termed information bias, the direction and magnitude of which depends
on whether the distribution of errors effect discrete variables with a countable number
of possible values (misclassification errors), the values of 1 or more variables (nondif-
ferential or differential misclassification), and its impact on binary variables. Misclassi-
fication can lead to alterations in the sensitivity or specificity of the measurement
method. Although correctly classifying someone who is truly exposed as exposed,
enhancing sensitivity, will be offset by falsely categorizing another unexposed and
who is truly exposed; conversely, categorizing someone correctly as unexposed,
strengthening specificity, will be lessened by misclassifying another as exposed.
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Predictive probability positive is the probability that someone who is classified as
exposed is truly exposed, whereas predictive probability negative is the probability
that someone who is classified as unexposed is truly unexposed.

P Values

There are 2 types of P values: upper and lower, and accurate definitions of the asso-
ciated statistics are often not considered rigorously in epidemiologic literature. An up-
per 1-tailed P value is the probability that a corresponding quantity computed from the
data known as the test statistic, such as a t-test or 2 statistic, will be greater than or
equal to its observed value, assuming that the test hypothesis is correct and there is
no source of bias in the data collection or analysis. Similarly, a lower 1-tailed P value is
the probability that the corresponding test statistic will be less than or equal to its
observed value, again assuming that the test hypothesis is correct and that the under-
lying statistical model is correct. The 2-tailed P value, however, is usually regarded as
twice the smaller of the upper and lower P values; however, being a probability, a
1-tailed P value must fall between 0 and 1, whereas the 2-tailed P value as defined,
may exceed 1. Although equally regarded as a level of significance,® this term is usu-
ally avoided because it may be used in reference to alpha levels. In significance
testing, small P values are supposed to indicate that at least 1 of the assumptions
used to derive it is incorrect, but all too often, the statistical model is taken as a given
so that a small P value is taken as indicating a low degree of compatibility between the
test hypothesis and the observed data.

Hypothesis Testing

The use of P values and references to statistically significant findings highlights the
dominant role that statistical hypothesis testing has occupied. Based on a value
less than or greater than an arbitrary cutoff value, usually .05, called the alpha (o) level
of the test, statistical significance testing of associations focuses on the null hypoth-
esis, which is usually formulated as a hypothesis of no association between 2 variables
from a population in which the observed study groups have been sampled in arandom
fashion. One may test for example the hypothesis that the risk difference in the pop-
ulation is 0 or the risk ratio is 1.0; alternatively, that the former is 0.1 and the latter equal
to 2.0. The use of a fixed a cutoff is the hallmark of statistical hypothesis testing with
both the alpha level and P value called the significance level of the test. This usage has
led to misinterpretation of the P value as the alpha level of a statistical hypothesis test.
A common misinterpretation of significance testing is to assert that there is no differ-
ence between 2 observed groups because the null test is not statistically significant
and because the P value is greater than the cutoff for declaring statistical significance.
Another misinterpretation of P values is that they represent probabilities of test hy-
potheses. A P value for a simple test hypothesis that exposure and disease are unas-
sociated is not a probability of that hypothesis. The P value includes not only the
probability of the observed data under the test hypothesis, but also the probabilities
for all other possible data configurations. Although the P value is a continuous mea-
sure of the compatibility between a hypothesis and data, the alpha level is used to
classify an observation as either significant, as when the P<a, such that the test hy-
pothesis is rejected, or not significant at the level a if P>a., in which case the test hy-
pothesis is accepted, or at least not rejected.

To avoid confusion, one should recall that the P value is a quantity computed from
the data, whereas the alpha level is a fixed cutoff, usually 0.05, that can be specified
without even seeing the data. Formal hypothesis testing avoids use of the P value in
the formulation of hypothesis testing, instead defining the test based on whether the
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value of the test statistic falls into a rejection region for the test statistic. An incorrect
rejection is called a type 1 error or alpha error. A hypothesis testing procedure is
said to be valid if, whenever the test hypothesis is true, the probability of rejection
(P<a) does not exceed the alpha level, provided there is no bias and the statistical
model is correct. Hence, a valid test with o = 0.01 (a 1% alpha level) will lead to a
type 1 error with no more than 1% probability, provided there is no bias or incorrect
assumption. However, if the test hypothesis is false but is not rejected, the incorrect
decision not to reject is called a type Il or beta error. If the test hypothesis is false, so
that rejection is the correct decision, the probability that the test hypothesis is
rejected is called the power of the test. The probability of a type Il error is related
to the power (Pr) by the equation: Pr (type Il error) = 1 - Pr. The trade-off between
the probabilities of type | and Il errors depends on the alpha level chosen in that
reducing the type | error when the test hypothesis is true requires a smaller alpha
level, because a smaller P value will be required to reject the test hypothesis. Unfor-
tunately, a lower alpha level increases the probability of a type Il error if the test hy-
pothesis is false while, increasing the alpha level reduces the probability of type I
error when the test hypothesis is false, thus increasing the probability of type | error
if it is true.

Confidence Intervals and Limits

Estimation measurement may benefit from more detailed statistics performed on a
continuous scale with a theoretically infinite number of possible values than the simple
dichotomy produced by statistical hypothesis testing of a simple parameter such as a
risk or rate ratio, IR or another epidemiologic measure. Although one way to account
for random error in the estimation process is to compute P values for a broad range of
possible parameters in addition to the null value, if the range is broad enough, it is
possible to calculate a confidence interval (Cl) for which the P value exceeds a specific
alpha level typically 0.05 as an example of interval estimation. The endpoints of the CI
are termed confidence limits and the width of the depends on both the amount of
random variability inherent in the data collection process and an arbitrary selected
alpha level that specifies the degree compatibility between the limits of the interval
and the data wherein one minus the alpha level (0.95 if alpha is 0.05) is called the con-
fidence level of the Cl and expressed as a percentage. Considering the relation of the
Cl to significance and hypothesis testing, consider a test of the null hypothesis with an
o = 0.10 If the 90% CI does not include the null point, then the null hypothesis would
be rejected for o = 0.10. On the other hand, if included in a 95% Cl, then the null hy-
pothesis would not be rejected for oo = 0.05. Because the 95% CI incudes the null
point and the 90% did not, it can be inferred that the 2-sided P value for the null hy-
pothesis is greater than .05 but less than .10. Thus, although a 2-sided P value instead
indicates only the degree of consistency between the data and a single hypothesis,
confidence limits provide an idea of the direction and magnitude of the underlying as-
sociation as well as the random variability of point estimation.?°

Because a given Cl is only one of an infinite number of ranges nested within one
another, points nearer to the center of the ranges are more compatible with the
data than points distant from the center; thus, to see the entire set of possible Cl,
one constructs a P value function, comprising all points for which the 2-sided P value
exceeds the alpha level of the Cl. It summarizes the 2 key components of the estima-
tion process. The peak of the curve indicates the point estimate and the concentration
of the curve around the point estimate indicates the precision of the estimate. A narrow
P value function would result from a large study with high precision, whereas a broad
function would result from a small study with low precision. A Cl represents only 1
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possible horizontal slide through the P value function. A P value function from which
one can find confidence limits for a hypothetical study with a rate ratio estimate of
3.1, has a curve that reaches its peak corresponding to the point estimate for the
rate ratio; while the 95% CI can be read directly from the graph as the function values
where the right-hand ordinate is 0.95. The P value for any value of the parameter can
be found from the left-hand ordinate corresponding to the height where the vertical
line drawn at the hypothesized rate ratio that equals 1 intersects the P value function.
Likelihood intervals, likelihood functions, and natural logarithms of the likelihood func-
tion or log-likelihood, which are beyond the scope of this article can be found in
advanced epidemiology texts, have sought to replace CI.2'23

EPIDEMIOLOGIC STUDY DESIGN

Epidemiologic study designs comprise both experimental and nonexperimental types.
The term experimental implies that the investigator manipulates the exposure
assigned to participants in the study. In a randomized clinical trial (RCT), the gold stan-
dard for medical investigation, the investigator creates groups through random alloca-
tion of an exposure or treatment. However, when experiments are infeasible or
unethical, epidemiologists design nonexperimental or observational studies that simu-
late what might have occurred had an experiment been conducted. In that regard, the
researcher is an observer rather than an agent who assigned interventions. Rothman
and colleagues®*-2° review the major types of epidemiologic studies further explained
below.

There are 4 types of nonexperimental studies: cohort, case control, cross-
sectional and ecological types. In cohort studies, the subjects of a source popula-
tion are classified according to their exposure status and followed over time to
ascertain disease incidence. In case control studies, cases arising from a source
population and a sample of the source population are classified according to their
exposure history. Cross-sectional studies include as subjects all persons in the
population at the time of ascertainment or a representative sample, selected
without regard to exposure or outcome status, usually to estimate prevalence. In
ecological studies, the unit of observation is a group of people rather than an
individual.

Cohort Studies

In principle, cohort studies can be used to estimate average risks, rates, and occur-
rence times, but to do so the entire cohort remains at risk and under observation for
the entire follow-up period. Such measurements, however, are only feasible when
there is little or no loss to follow-up. When losses and competing risks occur, IRs
can be estimated directly, whereas the average risk and occurrence time can be
estimated using basic survival analysis involving stratification on follow-up time using
life-table analysis methods. The main guide to the classification of persons or person-
time should be defined explicitly according to the study hypothesis and design to
estimate appropriately the exposure effects and avoid implicit assumptions. Chronic
exposures based on anticipated effects is more complicated than when exposure
occurs only at a point in time, which can be conceptualized as a period during which
the exposure accumulates to a sufficient extent to trigger a step in the causal process.
The time at which an outcome event occurs can be a major determinant of the amount
of person-time contributed by a subject to each exposure category. The method of
calculation for cumulative incidence and IR in cohort studies is shown in the example
below.
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In a study, a researcher observed 2000 people in total with 1000 in each exposure
status for 3 years to see whether they develop a disease. The result is shown in
Table 1.

_ number of new cases of a disease
number of candidate population

lexp = 36/1000 = 0.036, lnonexp = 10/1000 = 0.010,
risk ratio = lexp/lnonexp = 0.036/0.010 = 3.6.

number of disease onsets
2 persons liMe spent in population

Incidence rate =

number of disease onsets
> personstime spent in population
36

05 x44+1 x5+1.5x 8+2 x 6+2.5 x 4+3 x 973
36

2960 person — year

IRexp =

number of disease onsets
> personstime spent in population
10

05x2+1 x1+1.5x 142 x 3+2.5 x 1+3 x 992
10

2988 person — year

I Rnonexp

Rate ratio = IRgxp/IRnonexp = 3.63.

It is important to define and determine the time of the event in cohort studies as
unambiguously and precisely as possible, incorporating the details of available data
and the current state of knowledge about the study outcome. Cohort studies are
expensive to conduct because stable estimates of incidence require a substantial
number of cases of disease, and therefore person-time giving rise to the cases will
be substantial. When studying a rare disease or one that has a long latency for devel-
opment, especially when cost is a factor, a case control study design is preferable.

Table 1
Incidence and incidence rates

Years of Observation No. of Cases in Exposed (1000) No. of Cases in Nonexposed (1000)

0.5 4 2
1.0 5 1
1.5 8 1
2.0 6 3
2.5 4 1
3.0 9 2
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Case Control Studies

The use and understanding of case control studies was an important methodologic
advance in modern epidemiology as the field advanced from randomized to non-
randomized cohort studies to case control studies. Although conventional wisdom
holds that cohort studies are useful for evaluating the range of effects related to a
single exposure, case control studies nested within a single population using several
disease outcomes as the case series is possible with a case cohort study design.
Recognizing that case control studies are most practical for rare diseases when expo-
sure is rare, ordinary case control studies may likewise be inefficient unless selective
recruitment of additional exposed subjects is performed. Ideally, a case control study
should be conceptualized as a more efficient version of a corresponding cohort study.
Rather than including all of the experiences of the source population that gave rise to
cases, as would be the practice in a cohort study design, controls are selected from
the source population. Therein lies the challenge of achieving random sampling of
controls from the source population, and when it is not possible to identify explicitly
the source population, and simple random sampling is not possible, secondary source
populations become an option using neighborhood controls, random digit dialing,
hospital- or clinic-based controls, and even friends with close attention to representa-
tiveness, comparability of information accuracy, and the number of control groups
needed.

Recognizing that the primary goal for control selection is that the exposure distribu-
tion among controls is such that it is the same as in the source population of cases, OR
calculations achieve this goal by using control cases in place of the denominator in
measures of disease frequency to determine the ratio of the disease frequency in
exposed relative to unexposed people. Using person-time to illustrate, the goal re-
quires that exposed controls (B;) has the same ratio to the amount of exposed
person-time (T;) as unexposed controls (By) have to the amount of unexposed
person-time (Ty), apart from sampling error to compute control sampling rates:

B: _ B
T, To

If Ay is the exposed cases and Ay unexposed cases over a study period, the
exposed and unexposed IR are computed as:

Using the denominators of the frequencies of the exposed and unexposed controls
as substitutes for the actual denominators of the rates to obtain exposure-specific
case control rates or pseudo-rates, those rates can be rewritten as:

Pseudo-rate; = ﬁ and Pseudo-ratey = ﬁ
B1 Bo
By dividing the pseudorate for exposed by the pseudo-rate for unexposed, we
obtain an estimate of the ratio of the IRs in the source population provided that the
control sampling is independent of exposure.
The ratio of the 2 pseudo-rates in a case control study also known as the cross-
product ratio or OR is written as:

OR = A1 Bo/AoB1
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It can be viewed as the ratio of cases to controls among the exposed subjects
(A;/B,) divided by the ratio of cases to controls among the unexposed subjects
(Ao/By) or as the odds of being exposed among cases (A;/Ap) divided by the odds
of being exposed among controls (B;/By), in which case it is termed the exposure
OR. Although either interpretation gives the same result, viewing this OR as the ratio
of case control ratios shows more directly how the control group substitutes for the
denominator information in a cohort study and how the ratio of pseudo-frequencies
gives the same result as the ratio of IR, incidence proportion, or incidence odds in
the source population, if sampling is independent of exposure. Further, it is not neces-
sary to assume that the disease under study is rare.

Cross-Sectional Studies

Cross-sectional studies investigate the association between prevalence of diseases or
mortality and prevalence of risk factors in a defined population at a certain time point.
All the information is collected at the same time. Cross-sectional studies conducted to
estimate prevalence are termed a prevalence study. Exposure is ascertained simulta-
neously with the disease and different exposure subpopulations may be compared
with respect to their disease prevalence. Two potential limitations in cross-sectional
studies are determining the time order of events and overrepresentation of cases
with long duration and underrepresentation with short durations of illness, termed
length-biased sampling. Because prevalence depends on incidence and duration, a
high prevalence of disease or mortality may result from long duration of time despite
alow incidence. Because cross-sectional studies investigate the status at one specific
point in time, it may not be possible to determine whether the risk factors happened
before disease. Cross-sectional studies may involve sampling subjects differentially
with respect to disease status to increase the number of cases in the sample. Such
studies termed prevalent case control studies are designed similar to incident case
control studies except that the case series comprises prevalent rather than incident
cases. Although significant associations may be found in a given cross-sectional
study, it may not reflect the true causation.

Ecological Studies

Ecological studies focus on the association between the summary measure of disease
or mortality and risk factors, and the unit of ecological studies is a group not an indi-
vidual. The groups can be countries, states, regions, schools, or zip codes, among
others. Ecological measures can be classified into aggregate, environmental, and
global measures. Aggregate measures reflect characteristics of individuals within a
group and environmental measures represent physical characteristics of the
geographic location; global measures may be characteristics of the group or place
without analogy to the individual. Such studies are able to examine a broad range
of diseases and risk factors using demographic and consumption data, and are
very useful in generating hypotheses on association in advance of epidemiologic
studies on individual observations. In addition, ecological studies have other advan-
tages, such as low cost and the convenience link of aggregate data, freedom from
the measurement and design limitations of individual-level studies, and simplicity of
analysis and presentation. For some risk factors, aggregate measurements may be
more accurate than individual measurements. Data collection, disease definition,
and treatment may vary across units, and this can introduce bias. A major limitation
of ecological studies is bias, which can be interpreted as the failure of associations
seen at one level of grouping to correspond with effect measures at the grouping level
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of interest. In other words, the association between risk factor and disease found on
the group level may not hold true within individuals.

REGRESSION TECHNIQUES

Szklo and Nieto® review regression techniques.

Simple Linear Regression

The process of determining whether the relationship between the 2 variables is
compatible with straight line begins with the visual inspection of a scatter plot followed
by the calculation of the liner correlation coefficient, r. With a range of —1.0 to 1.0,
inscribing perfectly straight lines of negative and positive 1.0 slopes, a value of 0 indi-
cates instead no linear correlation. The correlation coefficient value contains no infor-
mation about the strength of the association between the 2 variables that is
represented by the slope of the theoretic line it inscribes that is further defined by 2
other parameters, B and B4, respectively, the y intercept when x = 0, and the regres-
sion coefficient as shown in the formula below:

Yy = Bo + B1x

In linear regression, the method used to estimate the values of the regression coef-
ficients is the least-squares method, which consists in finding the parameter values
that minimize the sum of the squares of the vertical distance between each of the
observed points and the line.?”® The notation traditionally used to represent the esti-
mated linear regression line is as follows:

y=bo+b1X

The regression coefficient (b4) estimates the average increase in the dependent
variable per unit increase in the independent variable and like any other statistical
estimate, it is subject to uncertainty and random error. Thus, it is important to esti-
mate the standard error of the regression coefficient to evaluate its statistical signif-
icance and to calculate the confidence limits around its point estimate. The standard
error estimate is provided readily by most statistical packages performing linear
regression.

Multiple Linear Regression

Simple linear regression can be extended to multivariate regression using the same
model adjusted when the outcome is a continuous variable as follows:

y= Bo + B1X1 + BoXo +... + BiX, Or y=b0 +b1 X1 + b2X2 +... +kak

The postulated risk factors (x or independent variables) can be continuous or cat-
egorical (dichotomous) with multiple levels that can be treated as ordinal or trans-
formed in a set of binary variables. The estimated values of the regression
coefficients are obtained by the least-squares method. An important assumption in
the model is that there is no interaction between the variables in the model such
that the change in y associated with a unit change in x for the entire range of x
and vice versa. The regression coefficient (B,) represents the average increase in
outcome per unit increase in X, adjusted for all the other variables in the model. If
interaction is present, stratified models can be used for each variable. Alternatively,
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interaction terms, known as product terms, can be used in the regression equation.
The multivariate model enables one to study the effect of main exposure while
adjusting confounders, mediators, and interaction at the same time. The traditional
way, such as restriction or stratification, is limited if there are many confounders.
The model can adjust both categorical and continuous variable as demonstrated
in the study by Weinstein and colleagues®® of the association between clinical stroke
and subsequent cognitive function in initially nondemented individuals. Outcome can
be expressed in natural log-transformed cognitive scores, as necessary, to reduce
skewness. The primary independent variable was stroke status. The unadjusted
model was expressed as: log-transformed cognitive scores = by + b; x stroke.
Model 1 was adjusted for age, sex, education level, cohort (original or offspring),
and the Mini-Mental State Examination (MMSE) score. Model 2 was further adjusted
for systolic blood pressure (SBP), diabetes, prevalent cardiovascular disease (CVD),
prevalent atrial fibrillation and current smoking.

Model 1: log-transformed cognitive scores = by + b; x stroke + b, x age + bz x
sex + b, x education + bs x cohort + bg x MMSE score; for model 2, add b, x SBP +
bs x diabetes + bg x CVD + b4 x atrial fibrillation + b;; x smoke. There is a list of 1
domain of cognitive scores as an example in Table 2

Multiple Logistic Regression

For binary outcome variables, the logistic regression model offers a more robust alter-
native to binary multiple linear regression. The logistic regression model assumes that
the relationship between a given value of a variable x and the probability of a binary
outcome follows the logistic function:

1

PO = e wmm

where P(y|x) denotes the probability (P) of the binary outcome (y) for a given value of x.
The outcome of this equation, a probability, is constrained to values within the range of
0 to 1. By translating instead into OR estimation, the probability equation can be
expressed in the equivalent equation:

Log (%) = log(odds) = bg+bix, where P is the short notation for P(y|x).

This expression is analogous to the simple linear regression function, except that
the ordinate in now the logarithm of the odds or log odds, also known as logit, rather
than the usual mean value of a continuous variable. Thus, if the relationship between
exposure (x) and the occurrence of an outcome is assumed to fit the logistic regression
model, that implies that the log odds of the outcome increases linearly with x. The mul-
tiple logistic regression model is shown as:

Table 2
Association of clinical stroke with cognitive performance
Model 1 Model 2
Outcome b, + SE P Value b, + SE P Value
LMi —1.35+£0.52 .010 —1.27 £ 0.60 .035

Abbreviations: LMi, logical memory-immediate recall; SE, standard error.
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P
Log<ﬁ> = log(odds) = bo+bix1+baxa+...bkXk, [Where the regression coef-

ficient (by) is the average increase in the log odds of the outcome per unit increase in
Xy, adjusted for all other variables in the model].

The OR corresponding to a unit increase in the independent variable is the antilog-
arithm or exponential function of the regression coefficient b, as follows:

OR = e’

Thus, the logistic regression model is a linear model in the log odds scale. What this
means in practical terms is that, when a continuous variable is entered as such, the
resulting coefficient and corresponding OR is assumed to represent the linear increase
in log odds or the exponential increase in odds, per unit increase in the independent
variable across the entire range of x values. Davydow and colleagues®® studied
whether depression, cognitive impairment without dementia (CIND), and/or dementia
were each independently associated with risk of ischemic stroke. The outcome of in-
terest was ischemic stroke. The primary independent variable was depression, CIND
or dementia status at baseline defined categorically as no disorder, depression alone,
CIND alone, dementia alone, cooccurring depression and CIND, or cooccurring
depression and dementia. In unadjusted analysis, the model could be written as:

L < P(stroke)

m) = bg+b; x baseline status.

Demographics, medical comorbidities, and health risk behaviors were treated as
the possible characteristics to modify the association. In adjusted analysis the multiple
logistic model is:

P(stroke) _ . .
Lo (m) = bo+b; x baseline status+b, x demographics

+bs x comorbidities+b, x health — risk behaviors.

The OR are shown in Table 3.

The adjusted OR resulting from the exponentiation of the logistic regression coeffi-
cient obtained is often used as a surrogate of the RR or prevalence rate ratio, respec-
tively. This interpretation is only justified for the analyses of rare outcomes, but when
the frequency of the outcome of interest in high, the OR is a biased estimate of the RR

Table 3
Multiple logistic model

Baseline Status

Unadjusted

OR (95% Cl)

Adjusted

OR (95% Cl)

Depression alone

1.11 (0.88, 1.40)

1.09 (0.85, 1.38)

CIND alone

1.55 (1.27, 1.90)

1.37 (1.11, 1.69)

Dementia alone

1.36 (1.04, 1.77)

1.08 (0.81, 1.44)

Cooccurring depression and CIND

1.95 (1.48, 2.56)

1.65 (1.24, 2.18)

Cooccurring depression and dementia

1.51(1.09, 2.10)

1.16 (0.82, 1.65)

Abbreviations: Cl, confidence interval; CIND, cognitive impairment without dementia; OR, odds

ratio.
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or the prevalence rate ratio, because it tends to exaggerate the magnitude of the as-
sociation. Thus, it is important to keep in mind the built-in bias associated with the OR
as an estimate of the incidence or prevalence rate ratio when the outcome is common.
An alternatives regression procedures to consider the log-binomial regression model,
which results in direct estimates of the incidence or prevalence rate ratio.>'
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